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Abstract
We present a theoretical analysis of correlation properties of the local density of
states in a disordered emitter probed by resonant tunnelling through a localized
impurity state. The emitter is considered to be a cylinder of length L and radius
R with elastic mean free path l � {L,R} and the effective dimensionality
d � 3 of the emitter is determined by the relation between the typical scale
over which diffusion occurs, namely the quasi-particle relaxation lengthLc, and
the dimensions L and R. The differential conductance measured in asymmetric
double-barrier structures has been used (see, e.g., Schmidt T, Haug R J, Fal’ko
V I, von Klitzing K, Förster A and Lüth H 1996 Europhys. Lett. 36 61) to
image local density-of-states fluctuations. We give analytic expressions for the
variance and for correlations of the differential conductance with respect to
voltage and applied magnetic field for the limits of a bulk three-dimensional
emitter, a film, a wire and a pillar, and we determine the effect of magnetic
anisotropy in lower dimensions. A numerical calculation, valid for arbitrary
Lc, is performed in order to describe the crossovers between these limits where
the correlation functions are sensitive to the shape of the emitter and the position
of the resonant impurity.

1. Introduction

A number of vertical transport experiments on double-barrier semiconductor heterostructures
[1–5] have observed impurity-assisted tunnelling, providing the possibility of using the
resonant impurity level as a local probe of electronic states of the electrodes. In particular,
the current I (V ) and differential conductance G = dI/dV measured in strongly asymmetric
double-barrier structures have been used to image fluctuations of the local density of states
(LDOS) of an electrode as a function of excitation energy E from the Fermi level [5–11].
Measurements taken for a series of applied magnetic field values produce a large statistical
ensemble of fluctuation data, δG(V,B) = G(V,B) − 〈G〉, allowing a comparison of
experimentally determined correlation functions [5, 11] with theoretical predictions [12].

0953-8984/01/316633+16$30.00 © 2001 IOP Publishing Ltd Printed in the UK 6633

http://stacks.iop.org/cm/13/6633


6634 E McCann and V I Fal’ko

Mesoscopic fluctuations of the local density of states (LDOS) in disordered systems are
believed to exhibit a broad distribution even in the metallic regime [13–15]. The fluctuations
arise from the quantum interference of electrons that are multiply scattered off an impurity
potential, characterized by an elastic mean free path l, resulting in coherent diffusion within
a volume limited by a quasi-particle relaxation length Lc. When the diffusion of the electron
density is damped before it is able to cover the whole length L of the sample, Lc � L, the
exact geometry of the sample is irrelevant and it is possible to integrate over all harmonics
of diffusive modes, neglecting discreteness caused by particular boundary conditions. On the
other hand, when the electron density diffuses throughout the entire system, L � Lc, the
lowest harmonic of the diffusive mode is divergent and it is possible to neglect the contribution
of higher harmonics [16–18], a procedure known as the zero-mode approximation. Therefore
the effective dimensionality of a sample, as far as mesoscopic fluctuations are concerned,
is determined by the relation between Lc and L, and, when Lc is comparable with L, the
magnitude of fluctuations and the form of correlation functions depend on the sample geometry.

In this paper we present a detailed quantitative analysis of correlation properties of
the differential conductance of an asymmetric double-barrier structure for various effective
dimensionalities in order to provide a theoretical basis for a quantitative comparison with
fluctuation data obtained experimentally. To model a typical experimental geometry [5,6,9–11]
we consider a nominally three-dimensional electrode which is a cylinder of length L and radius
R as sketched in figure 1 (cross sectional area S = πR2). Tunnelling via an impurity state of
energetic width � gives Lc = √

hD/(� + h̄γ ) where D = vF l/3 is the diffusion coefficient
of the electrode and γ is a quasi-particle relaxation rate due to processes within it. Thus the
effective dimensionality of observed fluctuations is determined by the geometry of the emitter,
the resonant impurity width and the strength of quasi-particle relaxation. The large amount
of data obtained in recent experiments enables one to make a statistically sound analysis of
correlation functions of fluctuations and to extract information about the emitter including the
efficiency of electron–electron interaction-induced relaxation of a hole below the Fermi level
created after the tunnelling event [10, 11].

�

�
�

�
�

�

�

� � � � � � � � � �

	

Figure 1. A sketch of the geometry of the emitter which is a cylinder of length L and radius R.
The resonant impurity is situated at one end z = 0 at a finite radius ρ away from the cylinder axis
and the applied magnetic field B may generally be directed at a tilt angle θ with respect to the
cylinder axis.

In principle, it is possible to imagine four different limiting relationships between the
lengths L, R and Lc which correspond to different effective dimensionalities d � 3. The limits
include bulk three-dimensional (3D) and quasi-d-dimensional (QdD) ones for d = {0, 1, 2}
as summarized in table 1. In the geometry we consider the current flow is along the cylinder
(the z-axis) which is perpendicular to the plane of a film for Q2D and along a wire for Q1D.
One way to distinguish between the limiting cases is by means of magnetic field anisotropy.
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Table 1. Definitions of the limits of effective dimensionality in terms of the relation between the
relaxation length Lc and the emitter dimensions L and R.

Effective Relation
dimensionality of lengths Description

3D Lc � {R,L} Bulk three dimensional

Q2D L � Lc � R Thin film

Q1D R � Lc � L Wire

Q0D {R,L} � Lc Pillar

As stated above, in the 3D limit the exact geometry of the electrode is irrelevant because
diffusion is damped before the boundaries are reached and in this case there is no dependence
on the orientation of an applied magnetic field. In other limiting cases, however, when many
harmonics contribute in some directions and the zero mode dominates in other directions, there
is anisotropy with respect to an applied magnetic field.

A particular experimental realization is likely to correspond to a value of Lc somewhere
between the idealized limiting cases. In this situation the diffusive modes are composed of
many harmonics that are sensitive to the exact geometry of the emitter and the position of the
resonant impurity (spectrometer) with respect to it. We take this into account by numerically
solving the diffusion equation in the presence of the boundary conditions for a cylinder for
various values of L, R and Lc, and different positions of the spectrometer.

The paper is organized as follows. In section 2 we show how to relate the fluctuations of
the differential conductance to diffusive modes and we present analytic results for the variance
in the limiting cases defined in table 1. Section 3 describes the calculation of the voltage-
dependent correlations, giving both analytic results in the limiting cases and numerical results
for the crossovers between them. Finally, in section 4 we present analytic results for magnetic
field-dependent correlations, taking into account magnetic field anisotropy.

2. Differential conductance fluctuations

In the experiments on asymmetric double-barrier structures [5–11] electrons tunnel from a
heavily doped disordered emitter through the energetically lowest level ES in the quantum
well sandwiched between the barriers, the level serving as a spectrometer of the emitter.
At zero bias, the energy of the discrete impurity level ES does not coincide with the bulk
chemical potential µl and it comes to resonance only after the bias voltage reaches a threshold
value VS(ES). The current–voltage I (V ) characteristics of such a device can be divided into
three typical intervals [2–5, 19]: below the threshold, where I ≈ 0; the threshold regime
V ≈ VS(ES), where I (V ) undergoes a jump when the resonant level crosses the Fermi level
µl in the emitter; and the interval of a plateau, VS(ES) < V < V1(E1), where the current
remains nearly constant until the next impurity level E1 is lowered enough to contribute to the
transport. Observed variations of the I (V ) characteristics on the plateau can only be due to
the energy dependence of an electron below the Fermi level in the emitter which makes the
plateau regime ideal for studying the image of LDOS fluctuations in the current.

The aim of the theory is to calculate the correlation function of two differential
conductances taken at different voltages and magnetic fields and to separate it into the product
of the variance and a normalized correlation function K(�V,�B),

〈δG(V,B) δG(V ′, B ′)〉 = 〈(δG)2〉K(�V,�B) (1)
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where �V = V ′ − V , �B = B ′ − B and K(0, 0) = 1. We begin by briefly showing how
to write the correlation function in terms of Green’s functions and for further details we refer
the reader to reference [12] which considered the limits of 3D and Q2D emitters. The current
is expressed in terms of the rates of tunnelling through the thick barrier on the emitter side,
denoted �l , and the thin barrier on the collector side, �r , using the single-particle Breit–Wigner
resonance conductance formula [20–23]:

I (V ) ≈ e

h

∫ ∞

−∞

�l(ε)�r(ε) [fl(ε) − fr(ε)] dε

[ε − ε0(V )]2 + �2(ε)/4
(2)

where

fl(r)(ε) = {1 + exp[(ε − µl(r))/T ]}−1

and we have neglected electron spin, although the final answers will be normalized so that this
is taken into account. The total width is� = �l +�r and in the case that we study here�r � �l ,
so � ≈ �r . Experimentally, such asymmetry arises from the structure of the sample studied.
In references [9–11], for example, the structure consists of a 10 nm wide GaAs quantum well
sandwiched between two Al0.3Ga0.7As barriers of 5 and 8 nm width, making the transparency
of the thick emitter barrier orders of magnitude lower than that of the collector barrier.

The height of the resonance conductance peak, G� , may be obtained from equation (2)
by setting µl ≈ ε0(V ):

G� =
〈 dI

dV

〉
max

≈ 4αe2

h

�l

�r

(3)

and the width at half-maximum is V� ≈ �/(eα). The voltage-to-energy conversion factor
α < 1 takes into account the actual distribution of the potential drop across the sample. The
average current in the plateau regime may be found from equation (2) by taking the limit
(µl − ε0) � {�, T }:

〈I 〉 ≈ 2eπ�l/h (4)

so the ensemble average 〈dI/dV 〉 tends to zero on the plateau.
The sample-specific fine structure of the current on the plateau is characterized

by the disorder-averaged correlation function of currents measured at different voltages
〈δI (V ) δI (V ′)〉. It is dominated by fluctuations of the rate of tunnelling �l between the
impurity and the continuum of states below the Fermi level µl of the disordered emitter,
whereas fluctuations of the rate of tunnelling between the impurity and collector �r ≈ � are
neglected for quantitative reasons resulting from the asymmetry of the device �r � �l and
because, at high voltages, quantum interference effects in the collector are washed out by
electron–electron collisions and the emission of plasmons and optical phonons. One considers
a product of tunnelling rates at energies ε and ε′, with resonant energies ε0 and ε′

0 respectively,
and, after changing variables as follows:

ω = (ε′ − ε) E = (ε′ + ε)/2

' = (ε′
0 − ε0) ≈ αe(V ′ − V ) E0 = (ε′

0 + ε0)/2

the current correlator may be written, using equation (2), as

〈δI (V, B) δI (V ′, B ′)〉 ≈
(
e�

h

)2 ∫ ∞

−∞

∫ ∞

−∞
dω dE

∏
±

1

(E ± ω/2 − E0 ∓ '/2)2 + �2/4

×
〈
δ�l

(
E − ω

2
, B

)
δ�l

(
E +

ω

2
, B ′

)〉
. (5)
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The variation of the current at high energy (voltage) scales is sensitive to electron dynamics at
short distances near the resonant impurity. That creates an uncertainty in the estimation of the
r.m.s. value of the current fluctuations and impedes quantitative description of the observed
features of the I (V ) characteristics since a rigorous calculation of the current–current correlator
becomes model dependent. On the other hand, such a deficiency does not affect the correlation
functions of two differential conductances, where the contribution of faster energy dependences
(longer length scales) is enhanced by the differentiation procedure. Such a correlation function
can be obtained from the disordered averaged current–current correlation function [13] by
taking the second derivative with respect to ' = αe(V − V ′):

〈δG(V,B) δG(V ′, B ′)〉 = −(αe)2 ∂2

∂'2
〈δI (V, B) δI (V ′, B ′)〉.

Integrating equation (5) with respect to E one may write

〈δG(V,B) δG(V ′, B ′)〉 ≈ −4π�

(
αe2

h

)2
∂2

∂'2

∫ ∞

−∞

〈δ�l(−ω/2, B) δ�l(ω/2, B ′)〉 dω[
(ω − ')2 + �2

] . (6)

The disorder-averaged product of tunnelling rates 〈δ�l(E − ω/2, B) δ�l(E + ω/2, B ′)〉 is
independent of E and dominated by contributions from diffusive modes that are singular as
ω → 0. To demonstrate this, the tunnelling rate is written in terms of the exact retarded
(advanced) Green’s functions of the electrode GR (A) [12, 23]:

�l(ε) ≈ 2 |t |2
∫

dp

(2π)d
Im[GA

ε (p)] (7)

where Im[GA] = [GA − GR]/2 and t is the tunnelling matrix element connecting the impurity
and the bulk electrode; its exact form plays no part in the following analysis. Equations (6)
and (7) show that correlations of the differential conductance are determined by correlations
of the local density of states in the emitter. After using the standard diagrammatic perturbation
theory techniques, which are eligible when applied to metallic systems with kF l � 1 and a
continuous energy spectrum [18], 〈δ�l(−ω/2, B) δ�l(+ω/2, B ′)〉 can be represented in terms
of diffusion modes Pω(r, r):〈
δ�l

(
−ω

2
, B

)
δ�l

(
+
ω

2
, B ′

)〉
≈ 1

2πντ 2

(
2

β

) ∫
dq

(2π)d

[
Pω(q) + P−ω(q)

]

×
[
|t |2

∫
dp

(2π)d

〈
GA
E

(
p +

q

2

)〉 〈
GR
E

(
p − q

2

)〉]2

(8)

where τ is the mean elastic scattering time in the emitter and

〈GR (A)
E (p)〉 = [E − ε(p) ± ih̄/(2τ)]−1

is the ensemble-averaged single-particle Green’s function. In the absence of time-reversal
symmetry, 〈(δ�l)

2〉 is reduced by the standard Dyson’s factor of 1/β, where β = 1 for
the orthogonal ensemble (in the presence of impurity scattering only) and β = 2 for the
unitary ensemble (in the presence of a finite magnetic field or weak scattering by magnetic
impurities that breaks time-reversal invariance). In the language of diagrammatics, diffusion
and Cooperon propagators give the same contribution at zero magnetic field, but Cooperon
propagators are excluded when time-reversal symmetry is broken. Thus, in terms of diffusion
propagators, the correlation function takes the form [12]

〈δG(V ) δG(V ′)〉 = − 1

β

(
αe2�l

πh̄

)2 (
∂2

∂'2

)
�

ν

∫
dω

[
Pω(r, r) + P−ω(r, r)

]
(h̄ω − ')2 + �2

(9)
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where r is the coordinate of the resonant impurity and P satisfies the diffusion equation [24][
−D

(
∇ − ie

h̄c
A

)2

+ γ − iω

]
Pω(r, r

′) = δ(r − r′) (10)

where rot A = �B. The propagator Pω(r, r
′) describes diffusion in a half-space restricted

by the tunnelling barrier at z = 0 and an insulating boundary at the cylinder surface ρ = R.
We consider there to be a tunnelling barrier at the emitter–substrate interface z = L, although
this allows us to model a good emitter–substrate interface by taking L → ∞. In the presence
of a vector potential the boundary condition at a tunnelling barrier is [17]

n · (∇ − A)ψ = 0 (11)

where n is the normal to the surface.
The variance may be found by setting �V = 0 and �B = 0, and, in the limits of

the effective dimensionalities defined in table 1, the diffusion propagator may be calculated
analytically. In this case the exact shape of the cross section of the emitter is not important, so
we consider a case that is easy to model, namely a ‘cylinder’ of length L in the z-direction with
a square cross section of area S = L2

⊥ in the (x, y) directions. For the impurity positioned on
the axis of the emitter, ρ = 0, we find

Pω(r, r) = 1

LS

∑
q⊥

∑
qz

2 cos2(qzz)

(Dq2 + γ − iω)
(12)

where the momentum q is expressed in terms of components along the cylinder axis qz and
perpendicular to the axis q⊥ giving q2 = q2

z + q2
⊥. The boundary condition (11) gives qz =

nzπ/Lwhere nz = 0, 1, 2, . . . and q⊥ = {2nxπ/L⊥, 2nyπ/L⊥} where nx(y) = 0,±1,±2, . . ..
When the relaxation length Lc is much shorter than a particular dimension of the emitter, Li for
i = {x, y, z}, then electrons typically cannot diffuse across the sample within the relaxation
time. It is possible to assume that the emitter is very long in that direction so that the discrete-
ness of momenta is irrelevant, allowing one to approximate the summation in equation (12)
by an integration over all corresponding components of momenta qi . On the other hand, when
Lc � Li then a typical electron can diffuse across the sample within the relaxation time. In
this case the lowest mode qi = 0 gives the dominant contribution to the propagator (12). For
example, for a 3D emitter, {L,R} � Lc, one integrates with respect to momenta perpendicular
to the axis of the cylinder and along the axis [12]:

Pω(r, r) =
∫

dq⊥
(2π)2

∫ ∞

0

dqz

π

2 cos2(qzz)

(Dq2 + γ − iω)
. (13)

Other effective dimensionalities d correspond to cases where 3 − d of the sample dimensions
are smaller than Lc, in which case the summation in equation (12) is performed by making
integrations in d directions and retaining the lowest mode in 3 − d directions. For Q2D
geometry, R � Lc � L, one integrates with respect to q⊥ but keeps only qz = 0, whereas
for Q1D, L � Lc � R, one integrates with respect to qz and keeps only q⊥ = 0. Finally for
Q0D, Lc � {L,R}, one keeps qz = 0 and q⊥ = 0 only. Expressions for the variance of the
differential conductance fluctuations for quasi-dimensionality d = {3, 2, 1, 0} are obtained by
setting �V = 0:

〈(δG3)
2〉 =

√
�

16βν(h̄D)3/2

G2
�

[1 + h̄γ /�]3/2
(14)

〈(δG2)
2〉 = 1

8βνh̄DL

G2
�

[1 + h̄γ /�]2
(15)
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〈(δG1)
2〉 = 3π

8βνS
√
h̄D�

G2
�

[1 + h̄γ /�]5/2
(16)

〈(δG0)
2〉 = π

βν�LS

G2
�

[1 + h̄γ /�]3
. (17)

The variance is normalized by G2
� in order to show that it is parametrically suppressed as

compared to the square of the height of the main peak. Since we consider d quasi-dimensions
embedded in a three-dimensional space, the suppression factor is 1/(g(L�)L

3−d) where g(L�)

is the conductance (measured in units of e2/h) of a d-dimensional piece of electrode with
length equal to L� [12], g(L�) ∼ ν�Ld

� .

3. Voltage-dependent correlation functions

Limiting expressions for voltage correlations are obtained in the same way as those for the
variance, keeping �B = 0 but with �V non-zero:

K3(�V, 0) = (2 − Y )
√

1 + Y )√
2Y 3

Y =
√

1 +

(
�V

Vc

)2

(18)

K2(�V, 0) = 1 − (�V /Vc)
2[

1 + (�V /Vc)2
]2 (19)

K1(�V, 0) = (4 − 2Y − Y 2)
√

1 + Y√
2Y 5

(20)

K0(�V, 0) = 1 − 3(�V /Vc)
2[

1 + (�V /Vc)2
]3 . (21)

Typical correlation voltages which can be observed in the experiment may differ from the
width of the main conductance resonance only by the relaxation rate γ of a floating-up ‘hole’
below the Fermi level created in the emitter after the tunnelling event, Vc = V� + h̄γ /(αe).
The form of the correlation function Kd(�V, 0) in the four different effective dimensionalities
considered above is plotted in figure 2. Parameters which give a quantitative measure of the
shape of the correlation function, the half-width VK , the voltage at the first minimum Vmin and
the value of the correlation function at the first minimum Kmin are listed in table 2. The general
trend as the effective dimensionality is lowered is for the half-width to be reduced whilst the
negative minimum increases in depth and occurs at a smaller voltage.

To study the crossovers between the limits studied above, we calculate the correlation
function for arbitrary Lc by solving the diffusion equation, equation (10), in the presence of

Table 2. Parameters describing the shape of the voltage correlation function given in terms of Vc

in the analytic limits. The width at half-height is VK , the voltage at the first minimum is Vmin and
the value of the correlation function at the first minimum is Kmin.

Effective
dimensionality VK/Vc Vmin/Vc Kmin

3D 0.65 3.08 −0.053

Q2D 0.53 1.73 −0.125

Q1D 0.39 1.25 −0.191

Q0D 0.38 1.00 −0.250



6640 E McCann and V I Fal’ko

0.0 1.0 2.0 3.0 4.0
∆V/Vc

0.0

0.5

1.0

K
(∆

V
,0

)

3D limit
Q2D limit
Q1D limit
Q0D limit

Figure 2. Analytic results for the correlation function K(�V, 0) as a function of �V/Vc in the
limits of effective dimensionalities defined in table 1.

the boundary condition, equation (11). This is done by first finding the eigenvalues λn and
normalized eigenvectors ψn(r) of[−iω − D∇2 + γ

]
ψn(r) = λnψn(r) (22)

and expressing the propagator as

Pω(r, r
′) =

∞∑
n=0

ψn(r)ψ
∗
n (r

′)
λn

. (23)

In circular cylindrical coordinates the position of the resonant impurity is r = (ρ, φ, z) with
z = 0 as shown in figure 1. The angle φ is set to zero without loss of generality and we find

Pω(r, r) = 2

πR2L

∑
m,αnm

J 2
m(αnmρ/R)

(1 − m2/α2
nm)J

2
m(αnm)

∑
qz

cos2(qzz)

(Dq2
z + Dα2

nm/R
2 + γ − iω)

(24)

where m = 0,±1,±2, . . . and Jm is a Bessel function of the first kind of order m. For a given
m, the numbers αnm are solutions of the boundary condition at the cylinder surface ρ = R:

∂ρJm(αnmρ/R)
∣∣
ρ=R

= 0

which may be expressed as

mJm(αnm) = αnmJm+1(αnm).

We solve this boundary condition numerically in order to calculate the propagator and the
correlation function for arbitrary Lc and 0 � ρ � R.
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3.1. Dimensional crossover in a thin film

First we present results for a film with L/R = 0.3, a geometry which is similar to that
studied in the experiments of references [10, 11]. The dependence of the correlation function
K(�V, 0) on �V with the spectrometer positioned at the centre of the film ρ/R = 0 is shown
in figure 3 for representative values of Lc/R (symbols) with a comparison to the analytic limits
(continuous lines). The dependence of K(�V, 0) on �V with the spectrometer positioned
halfway between the centre of the film and its perimeter ρ/R = 0.5 is shown in figure 4. In
order to quantify the change in the shape ofK(�V, 0) as a function ofLc/R in the film, figure 5
shows the half-width VK and the value of the correlation function at the first minimum Kmin

with numerical results for different impurity positions (symbols) compared with the analytic
limits (continuous horizontal lines). The vertical lines represent the positions where we would
expect a crossover between dimensionalities, namely Lc = L (dashed) and Lc = R (dotted).

0.0 1.0 2.0 3.0 4.0
∆V/Vc

0.0

0.5

1.0

K
(∆

V
,0

)

L/R = 0.3, ρ/R = 0.

3D limit
Q2D limit
Q1D limit
Q0D limit
Lc/R = 0.1
Lc/R = 0.6
Lc/R = 1.0
Lc/R = 1.5

Figure 3. The theoretical form of the correlation function K(�V, 0) for a film with L/R = 0.3
as a function of �V/Vc with the resonant impurity on the cylinder axis ρ/R = 0. Continuous
lines are analytic limits and symbols are numerical results for different values of Lc/R as shown
in the key.

As expected, the correlation function shows 3D behaviour for Lc � {L,R} and Q0D
behaviour for {L,R} � Lc, irrespective of the impurity position. For the impurity at the
centre of the film ρ/R = 0 (solid circles in figure 5), there is a relatively smooth change in
both VK and Kmin as Lc increases at Lc = L from their 3D values to values nearer the Q2D
expectation. For L < Lc < R there is a plateau in Kmin between the 3D and Q2D values
whereas VK falls steadily towards the Q0D value and this fall is complete at Lc = R. The
change in Kmin to its Q0D value is much slower and is only complete at {L,R} � Lc. For the
impurity positioned halfway between the centre of the film and its perimeter ρ/R = 0.5 (clear
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0.0 1.0 2.0 3.0 4.0
∆V/Vc

0.0

0.5

1.0

K
(∆

V
,0

)

L/R = 0.3, ρ/R = 0.5.

3D limit
Q2D limit
Q1D limit
Q0D limit
Lc/R = 0.1
Lc/R = 0.6
Lc/R = 1.0
Lc/R = 1.5

Figure 4. The theoretical form of the correlation function K(�V, 0) for a film with L/R = 0.3
as a function of �V/Vc with the resonant impurity off the cylinder axis ρ/R = 0.5. Continuous
lines are analytic limits and symbols are numerical results for different values of Lc/R as shown
in the key.
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Figure 5. Numerical evaluation of the dependence on Lc of parameters describing the shape of
the voltage correlation function for a film with L/R = 0.3. The top panel shows the width at
half-height VK and the bottom one shows the value of the correlation function at the first minimum
Kmin for ρ/R = 0 (solid circles) and ρ/R = 0.5 (clear diamonds). Horizontal continuous lines
are analytic limits given in table 2: solid: 3D; dashed: Q2D; dot–dashed: Q1D; dotted: Q0D. The
vertical dashed line is Lc = L and the vertical dotted line is Lc = R.
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diamonds in figure 5), there is very little difference in the shape of K(�V, 0) near Lc = L as
compared to the shape for the impurity at the centre of the film: there is no dependence on the
impurity position at the crossover between 3D and Q2D because the diffusive modes in the
plane of the film are not influenced by the geometry. On the other hand, there is quite a strong
dependence on the impurity position at the Q2D/Q0D crossover around Lc = R, especially in
the Kmin-values which change very slowly to their Q0D limit: in this case the diffusive modes
in the plane of the film are heavily influenced by the geometry.

3.2. Dimensional crossover in a wire

Now we consider a cylindrical wire with L/R = 3.0. The dependence of the correlation
functionK(�V, 0)on�V with the spectrometer positioned on the axis of the cylinderρ/R = 0
is shown in figure 6 for representative values of Lc/R (symbols) with a comparison to the
analytic limits (continuous lines). The dependence of K(�V, 0) on �V with the spectrometer
positioned halfway between the cylinder axis and its perimeter ρ/R = 0.5 is shown in figure 7.
To quantify the change in the shape of K(�V, 0) as a function of Lc/R for the wire, figure 8
shows the half-width VK and the value of the correlation function at the first minimum Kmin

with numerical results for different impurity positions (symbols) compared with the analytic
limits (continuous horizontal lines). The vertical lines represent the positions where we would
expect a crossover between dimensionality, namely Lc = L (dashed) and Lc = R (dotted).
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Figure 6. The theoretical form of the correlation function K(�V, 0) for a wire with L/R = 3.0
as a function of �V/Vc with the resonant impurity on the cylinder axis ρ/R = 0. Continuous
lines are analytic limits and symbols are numerical results for different values of Lc/R as shown
in the key.
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Figure 7. The theoretical form of the correlation function K(�V, 0) for a wire with L/R = 3.0
as a function of �V/Vc with the resonant impurity off the cylinder axis ρ/R = 0.5. Continuous
lines are analytic limits and symbols are numerical results for different values of Lc/R as shown
in the key.
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Figure 8. Numerical evaluation of the dependence on Lc of parameters describing the shape of
the voltage correlation function for a wire with L/R = 3.0. The top panel shows the width at
half-height VK and the bottom one shows the value of the correlation function at the first minimum
Kmin for ρ/R = 0 (solid circles) and ρ/R = 0.5 (clear diamonds). Horizontal continuous lines
are analytic limits given in table 2: solid: 3D; dashed: Q2D; dot–dashed: Q1D; dotted: Q0D. The
vertical dashed line is Lc = L and the vertical dotted line is Lc = R.
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As for the film, the correlation function for the wire shows 3D behaviour for Lc � {L,R}
and Q0D behaviour for {L,R} � Lc, irrespective of the impurity position. For the impurity
on the cylinder axis ρ/R = 0 (solid circles in figure 8) there is a sharp change in both VK and
Kmin as Lc increases at Lc = R from their 3D values to values nearer the Q1D expectation.
For R < Lc < L there seems to be a slight plateau in Kmin just above the Q1D limit whereas
VK falls steadily towards the Q0D value and this fall is complete at Lc = L. The change in
Kmin to its Q0D value is much slower and is only complete at {L,R} � Lc. For the impurity
positioned halfway between the cylinder axis and its perimeter ρ/R = 0.5 (clear diamonds in
figure 5), the 3D/Q1D crossover is smoother than that with the impurity on the cylinder axis:
as for the film, the diffusive modes perpendicular to the cylinder axis are heavily influenced by
the geometry near Lc = R. On the other hand, there is quite weak dependence on the impurity
position at the Q1D/Q0D crossover around Lc = L.

4. Magnetic field-dependent correlation functions

In this section we describe the calculation of the correlation function with respect to
magnetic field. For convenience, a particular choice of magnetic vector potential is made
for each different geometry and magnetic field orientation, preserving the zero-field boundary
conditions, n · ∇ψ = 0, by choosing A · n = 0 [25]. We begin by considering the field
orientated parallel to the cylinder axis. In the 3D and Q2D cases, the sample is considered to
be infinite in the perpendicular direction and it is convenient to adopt Cartesian coordinates
and to use the Landau gauge. The vector potential may be written as A = ĵx �B where ĵ is
a unit vector in the y-direction, perpendicular to the axis. The zero-field boundary conditions
are preserved since A · k = 0 and, the sample being infinite in the y-direction, the propagator
may be written as

Pω(r, r) = 1

L

∞∑
n=0

∑
qz

∫ ∞

−∞

dqy

2π

2 cos2(qzz)ϕ
2
n(x, qy)

(Dq2
z + 2Dλ−2(n + 1

2 ) + γ − iω)
(25)

where λ−2 = e�B/ch̄, and ϕn(x, qy) are Landau wavefunctions of an electron in a magnetic
field. As a result, the correlation function of differential conductances with respect to magnetic
field variation directed parallel to the current K‖

d (0,�B) for d = 3, 2 may be written as [12]

K
‖
3 (0,�B) =

∞∑
n=0

3
2 (X

‖
3)

−3/2

[n + 1
2 + 1/X‖

3]5/2
(26)

K
‖
2 (0,�B) =

∞∑
n=0

2(X‖
2)

−2

[n + 1
2 + 1/X‖

2]3
= − 1

(X
‖
2)

2
ψ(2)

(
1

2
+

1

X
‖
2

)
(27)

X
‖
3 = X

‖
2 = �B

B
‖
c,3 (2)

B
‖
c,3 (2) = hc

2eL2
c

(28)

where ψ(2) is the second derivative of Euler’s psi function and the factors (X‖
3)

−3/2 and (X
‖
2)

−2

arise after correct normalization of the Landau wavefunctions.
As stated above, Q1D and Q0D correspond to taking into account in the diffusion

propagator, equation (10), only the lowest mode, q⊥ = 0, with respect to diffusion
perpendicular to the cylinder axis. This corresponds to setting ∇⊥ = 0. The vector potential A

is treated as a perturbation [17] that is averaged with respect to the zero-mode wavefunctions
for zero field:

ψ0(z) =
√

2/πLR2 cos(qzz) for Q1D

ψ0 =
√

1/πR2L for Q0D
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which are spatially homogeneous in the perpendicular direction. To simplify, we choose
〈A〉 = 0 so that we need to calculate only

〈A2〉 =
∫

A2ψ2
0 (z) dz ρ dρ dφ.

The diffusion equation is now expressed as[
−iω + D

(
e

h̄c

)2

〈A2〉 − D ∂2
z + γ

]
Pω(r, r

′) = δ(r − r′). (29)

Providing that we also choose A without any z-dependence, we may write

Pω(r, r) = 2

πR2L

∑
qz

cos2(qzz)

(Dq2
z + D(e/[h̄c])2〈A2〉 + γ − iω)

In order to calculate 〈A2〉 we employ circular cylindrical coordinates (ρ, φ, z) with unit
vectors (ρ̂0, φ̂0, k̂). It is appropriate to write the vector potential in the symmetric gauge,
A = φ̂0ρ(�B/2), because it maintains radial symmetry and obeys A · n ≡ A · ρ̂0 = 0.
Thus 〈A2〉 = �B2R2/8 and we find

K
‖
1 (0,�B) = 1

[1 + (X
‖
1)

2]5/2
(30)

K
‖
0 (0,�B) = 1

[1 + (X
‖
0)

2]3
(31)

X
‖
1 = X

‖
0 = �B

B
‖
c,1(0)

B
‖
c,1(0) =

√
4

π

hc

eRLc

. (32)

The correlation functions in 3D and Q0D, equation (26) and equation (31) respectively, are
largely insensitive to the orientation of the applied magnetic field because Lc is either smaller
than all dimensions or larger than all dimensions. On the other hand, the correlation functions
in Q2D and Q1D, equation (27) and equation (30) respectively, are sensitive to the orientation
of the applied magnetic field because motion perpendicular to the field direction may be
influenced by the boundary conditions.

For the magnetic field orientated perpendicular to the cylinder axis in Q2D and Q1D, we
again treat A as a perturbation that is averaged with respect to the zero-mode wavefunctions
for zero field. For Q2D we choose A = −ĵ(z−L/2)�B, satisfying 〈A〉 = 0 and A · k = 0,
which gives 〈A2〉 = �B2 L2/12:

K⊥
2 (0,�B) = 1

[1 + (X⊥
2 )2]2

(33)

X⊥
2 = �B

B⊥
c,2

B⊥
c,2 =

√
6

π

hc

eLLc

. (34)

This correlation function is qualitatively different from that for a parallel magnetic field,
equation (27).

For Q1D we choose A = k̂ρ �B sin φ in circular cylindrical coordinates, satisfying
〈A〉 = 0 and A · ρ̂0 = 0, which gives 〈A2〉 = �B2 R2/4:

K⊥
1 (0,�B) = 1

[1 + (X⊥
1 )2]5/2

(35)

X⊥
1 = �B

B⊥
c,1

B⊥
c,1 =

√
2

π

hc

eRLc

. (36)
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In Q1D, the correlation functions (30) and (35) have the same form and the correlation
parameters Bc for the field orientated along the wire axis and perpendicular to it may differ
only by a factor of

√
2, �B

‖
c /�B⊥

c = √
2.

5. Summary

In this paper we presented a theoretical analysis of correlation properties of impurity-assisted
tunnelling in an asymmetric double-barrier structure. The aim was to provide a means
of analysing fluctuation data obtained experimentally in situations where the quasi-particle
relaxation length Lc is comparable with or greater than the sample dimensions, producing an
effective dimensionality less than three. We considered the change in shape of the voltage-
dependent correlation function of differential conductances as Lc is varied and showed that,
near a crossover between effective dimensionalities, it is influenced by the exact geometry of
the sample and the position of the resonant impurity.
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